- Home
- Standard 11
- Mathematics
13.Statistics
normal
If $\sum\limits_{i = 1}^{18} {({x_i} - 8) = 9} $ and $\sum\limits_{i = 1}^{18} {({x_i} - 8)^2 = 45} $ then the standard deviation of $x_1, x_2, ...... x_{18}$ is :-
A
$4/9$
B
$9/4$
C
$3/2$
D
None of these
Solution
Varriance of observation $\left(\mathrm{x}_{1}-8\right) \forall \mathrm{i}=1,2,3, \ldots .18$
$=\frac{45}{18}-\left(\frac{9}{18}\right)^{2}=\frac{5}{2}-\frac{1}{4}=\frac{9}{4}$
then $S.D.$ of $x_{1} \forall i=1,2,3, \ldots . .18$
$=\sqrt{\frac{9}{4}}=\frac{3}{2}$
Standard 11
Mathematics
Similar Questions
Let $\mu$ be the mean and $\sigma$ be the standard deviation of the distribution
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
where $\sum f_i=62$. if $[x]$ denotes the greatest integer $\leq x$, then $\left[\mu^2+\sigma^2\right]$ is equal $………$.