If $\sum\limits_{i = 1}^{18} {({x_i} - 8) = 9} $ and $\sum\limits_{i = 1}^{18} {({x_i} - 8)^2 = 45} $ then the standard deviation of $x_1, x_2, ...... x_{18}$ is :-

  • A

    $4/9$

  • B

    $9/4$

  • C

    $3/2$

  • D

    None of these

Similar Questions

The mean and standard deviation of $15$ observations are found to be $8$ and $3$ respectively. On rechecking it was found that, in the observations, $20$ was misread as $5$ . Then, the correct variance is equal to......

  • [JEE MAIN 2022]

In an experiment with $15$ observations on $x$, the following results were available $\sum {x^2} = 2830$, $\sum x = 170$. On observation that was $20$ was found to be wrong and was replaced by the correct value $30$. Then the corrected variance is..

  • [AIEEE 2003]

Let $S$ be the set of all values of $a_1$ for which the mean deviation about the mean of $100$ consecutive positive integers $a _1, a _2, a _3, \ldots ., a _{100}$ is $25$. Then $S$ is

  • [JEE MAIN 2023]

For a frequency distribution, standard deviation is computed by

While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.